Simultaneous inference for multiple testing and clustering via a Dirichlet process mixture model

نویسندگان

  • David B Dahl
  • Qianxing Mo
  • Marina Vannucci
چکیده

We propose a Bayesian nonparametric regression model that exploits clustering for increased sensitivity in multiple hypothesis testing. We build on the recently proposed BEMMA (Bayesian Effects Models for Microarrays) method which is able to model dependence among objects through clustering and then estimates hypothesis-testing parameters averaged over clustering uncertainty. We propose several improvements. First, we separate the clustering of the regression coefficients from the part of the model that accommodates heteroscedasticity. Second, our model accommodates a wider class of experimental designs, such as permitting covariates and not requiring independent sampling. Third, we provide a more satisfactory treatment of nuisance parameters and some hyperparameters. Finally, we do not require the arbitrary designation of a reference treatment. The proposed method is compared in a simulation study to ANOVA and the BEMMA methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spiked Dirichlet Process Prior for Bayesian Multiple Hypothesis Testing in Random Effects Models.

We propose a Bayesian method for multiple hypothesis testing in random effects models that uses Dirichlet process (DP) priors for a nonparametric treatment of the random effects distribution. We consider a general model formulation which accommodates a variety of multiple treatment conditions. A key feature of our method is the use of a product of spiked distributions, i.e., mixtures of a point...

متن کامل

The Dirichlet Labeling Process for Clustering Functional Data

We consider problems involving functional data where we have a collection of functions, each viewed as a process realization, e.g., a random curve or surface. For a particular process realization, we assume that the observation at a given location can be allocated to separate groups via a random allocation process, which we name the Dirichlet labeling process. We investigate properties of this ...

متن کامل

Variable selection in clustering via Dirichlet process mixture models

The increased collection of high-dimensional data in various fields has raised a strong interest in clustering algorithms and variable selection procedures. In this paper, we propose a model-based method that addresses the two problems simultaneously. We introduce a latent binary vector to identify discriminating variables and use Dirichlet process mixture models to define the cluster structure...

متن کامل

Nonparametric Bayesian Clustering via Infinite Warped Mixture Models

We introduce a flexible class of mixture models for clustering and density estimation. Our model allows clustering of non-linearly-separable data, produces a potentially low-dimensional latent representation, automatically infers the number of clusters, and produces a density estimate. Our approach makes use of two tools from Bayesian nonparametrics: a Dirichlet process mixture model to allow a...

متن کامل

The Dirichlet Labeling Process for Functional Data Analysis

We consider problems involving functional data where we have a collection of functions, each viewed as a process realization, e.g., a random curve or surface. For a particular process realization, we assume that the observation at a given location can be allocated to separate groups via a random allocation process, which we name the Dirichlet labeling process. We investigate properties of this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006